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What this talk is about

An infinite-diml irreducible representation π of a
reductive group G is very complicated.

π  simpler invt (Jantzen-Zuckerman):
1. rep σ of a Weyl group, vector v(π) in space of σ.
2. vector v(π) subquotient rep σ(π) of σ.
3. σ(π) has natural irreducible quotient σJ(π) (Joseph).

Parts (1) and (2) are defined over Z.

I learned at Chicago (from Jon Alperin and George Glauberman)
that definition over Z is a good and interesting thing.
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What this talk is about (continued)

Our story so far: infinite dimensional representation

π of reductive G σ(π)� σJ(π)

rep and irreducible quotient of finite Weyl group W .

GL(n): σ(π) = σJ(π) is irreducible; any σ ∈ Ŵ can occur.

Other G: only certain values of σJ(π) are possible.

FACT (Lusztig): σJ (π) must be a special rep of W

Lusztig (1979) defined special reps of W as part of his
classification of irr reps of finite Chevalley groups.

PLAN(1): outline the definition of σ(π)
(coherent families: Schmid, Jantzen, Zuckerman).

PLAN(2): sketch some elementary integrality properties of
the rep σ(π) (tau invariants: Borho, Jantzen, Duflo).

PLAN(3): show how these integrality properties lead to
Lusztig’s special reps in rank two.
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Character formulas: compact case

K compact conn Lie, max torus T , π ∈ K̂ .

Θπ(k) = tr π(k) smooth on K ; Θπ determines π.

Weyl: there is a dominant regular character γ ∈ T̂ so that

Θπ(t) =
(∑

w∈W

sgn(w)(w · γ)(t)
)
/D(t) (t ∈ T ).

Summary: the character formula for an irreducible
representation π of K is sum over a W -orbit of chars of T ,
coefficients given by representation sgn ∈ Ŵ .

We’ll see that σ(π) = σJ(π) = sgn.
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Character formulas: noncompact case

Harish-Chandra showed how to extend Weyl’s formula to
real reductive G ⊃ H maximal torus, π ∈ Ĝ.

Θπ(g) = tr π(g) generalized fn on G; Θπ determines π.

HC: ∃ dominant weight γ ∈ h∗C so that

Θπ(h) =
(∑

w∈W

∑
φ∈Ĥ

dφ=w·γ

aw,φ · φ(h)
)
/D(h) (h ∈ H; aw,φ ∈ Z).

HC: differential eqns satisfied by Θπ  γ, exponentials.

Summary: character formula on H for irreducible
representation π of G is sum over characters of H with
differentials in a single W -orbit of characters of h∗C.

Roughly: σ(π) ∈ Ŵ generated by function w 7→ aw on W .

Difficulty: aw,φ depends not just on w but also on φ ∈ Ĥ.
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(Not) making W act on characters of H.

Our story so far: π ∈ Ĝ Θπ distribution character of π:

Θπ(h) =
(∑

w∈W

∑
φ∈Ĥ

dφ=w·γ

aφ · φ(h)
)
/D(h) (h ∈ H; aφ ∈ Z).

Want W to “act” on Θπ: pretend Θπ is “function” of γ. . . :

x ·Θπ(h)
?
=
(∑

w∈W

∑
φ∈Ĥ

dφ′=wx−1·γ

aφ · φ′(h)
)
/D(h).

Dominant weight γ ∈ h∗C called infinitesimal character of π

To make this precise, we need to pass from the character
φ with dφ = w · γ to a character φ′ with dφ′ = wx−1 · γ.

Should act on φ by wx−1w−1.

But W need not preserve the real Cartan subgroup H, so
need not act on characters of H.
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The integral Weyl group to the rescue.

To make Weyl group W act on a distribution character for
G, needed W act on some characters of a real torus H.

Where W acts is on rational characters τ of H: if α ∈ h∗ is
a root, and α∨ ∈ h the corresponding coroot, then

sα(τ) = τ − dτ(α∨)α.

Rationality of τ means dτ(α∨) ∈ Z; action of sα just
translates τ by a multiple of the root α.

This doesn’t work in our setting: γ is not a rational
character, so perhaps γ(α∨) /∈ Z.

So we define the problem out of existence. . .

Definition. The integral Weyl group for γ ∈ h∗C is

W (γ) = {x ∈ W | xγ − γ = integer combination of roots}



David Vogan

Introduction

Defining σ(π)

The τ invariant

Describing cells

Jantzen-Zuckerman translation (A)

Recall that we had a formula for a distribution character

Θπ(h) =
(∑

w∈W

∑
dφ=w·γ

aw,φ · φ(h)
)
/D(h)

and wished to define (for x in W )

x ·Θπ(h)
?
=
(∑

w∈W

∑
dφ′=wx−1·γ

aφ · φ′(h)
)
/D(h).

For each character φ of differential wγ in the character formula,
and x ∈ W (γ), we can define φ′ = φ+ w(x · γ − γ); here
x · γ − γ is a sum of roots, so w(x · γ − γ) is as well, and
therefore a well-defined (rational) character of H.

Theorem (Jantzen-Zuckerman): For x ∈ W (γ), x ·Θπ is an
integer combination of chars of reps π′ of infl char γ:

x ·Θπ =
∑

π′ infl char γ

mπ′,π(x)Θπ′ .
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Jantzen-Zuckerman translation (B)

γ ∈ h∗ dom regular, W (γ) = integral Weyl group.

Ĝγ = irr reps, infinitesimal char γ (finite set).

ZĜγ = virtual reps, infl char γ (finite rank lattice).

Recall Jantzen-Zuckerman action on virtual characters

x ·Θπ =
∑

π′ infl char γ

mπ′,π(x)Θπ′ .

Theorem (Jantzen-Zuckerman): The integer matrices

M(x) = (mπ′,π(x)) (x ∈ W (γ))

define a representation of W (γ) over Z, with basis Ĝγ .

Understanding this integer rep of W (γ) is a large step
toward character formulas for irreducible reps.
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Cones and cells

π, π′ ∈ Ĝγ ; write π′ ≤L π if ∃x ∈W (γ) with Θ′π in x ·Θπ.

Equivalent: ∃F alg rep of Gad, π′ subquo of π ⊗ F .

π′ ≤L π is directed graph structure on Ĝγ .

Left cone of π is C(π) = {π′|π′ ≤L π}; W (γ) � ZC(π).

Left sub of π is C0(π) = {π′|π′ ≤L π 6≤L π
′}; W (γ) � ZC0(π).

Get equiv relation π ∼L π
′ iff π′ ≤L π ≤L π

′. Equiv classes
are called left cells: C(π) = C(π)− C0(π).

Left cell rep σ(π) of W (γ) is ZC(π)/ZC0(π).

Free Z module with basis C(π).

Reason for the term left: Kazhdan and Lusztig introduced two relations
≤L, ≤R , on W , related to left and right multiplication in the Hecke
algebra of W . This notion generalizes the KL definition of ≤L.
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The Borho-Jantzen-Duflo τ invariant

W (γ) = integral Weyl group ⊃ S(γ) simple reflections.

Def: τ -invt of π ∈ Ĝγ is τ(π) = {s ∈ S(γ) | s · π = −π}.

Write Ĝs
γ = {π ∈ Ĝγ | s ∈ τ(π)}, ĜS0

γ = ∩s∈S0Ĝ
s
γ .

We know everything about the action of simple reflections
in the τ -invariant.

Next theorem tells something about the action of simple
reflections not in the τ -invariant.

Theorem (BJDZ?) Suppose π ∈ Ĝγ , and s ∈ S(γ). Then

s · π =

{
−π (s ∈ τ(π))

π +
∑
π′∈Ĝs

γ
mπ′,π(s)π′ (s /∈ τ(π)).

Order Ĝγ by putting Ĝs
γ last: σ(s) =

(
I 0

M −I

)
.



David Vogan

Introduction

Defining σ(π)

The τ invariant

Describing cells

Where does that theorem come from?

At the center of geometric representation theory for G(C)
is the smooth projective algebraic variety

B = Borel subgroups of G(C).

We have dim H∗(B,C) = #W : B is a geometrization of W .

W is generated by finite set S of simple reflections.

s ∈ S  variety Ps of parabolic subgroups of type s.

Smooth fibration ps : B → Ps makes B a P1 bundle.

These P1 bundles control the geometry of B.

Geometric representation theory rep theory of G
“fibers” over the rep theory of SL(2) for each simple s.

Borho-Jantzen-Duflo-Zuckerman theorem does that.
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τ invariants and cells

s · π =

{
−π (s ∈ τ(π))

π +
∑
π′∈Ĝs

γ
mπ′,π(s)π′ (s /∈ τ(π))

.

Corollary Suppose π ∈ Ĝγ .

1. If τ(π) = Sγ (all simple reflections) then
C(π) = C(π) = {π},

and σ(π) = sgnW (γ). (Say π is minimal.)

2. If τ(π) = ∅, then
C(π) = {π} ∪ {π′|τ(π′) 6= ∅}, C(π) = {π}

and σ(π) = trivialW (γ). (Say π is generic.)

Interesting/difficult case: ∅ $ τ(π) $ S(γ).

Minimal includes the representations usually called minimal, like
the Segal-Shale-Weil metaplectic representation.

Generic is (nearly) the automorphic form notion of generic.
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Example: U(2,1)
Say G = U(2,1), γ = half sum of positive roots.

W (γ) = W = S3, S(γ) = {s, t} = {(1,2), (2,3)}.

Ĝγ consists of 6 representations:
1. A = generic disc ser, τ(A) = ∅, F = triv, τ(F ) = {s, t}.
2. B = hol ds, τ(B) = {s}, C = antihol ds, τ(C) = {t}.
3. D = hol Aq, τ(D) = {t}, E = antihol Aq, τ(E) = {s}.

Action of W
π s · π t · π left cell C(π)

A A + E A + D {A}
B −B B + D {B,D}
C C + E −C {C,E}
D D + B + F −D {B,D}
E −E E + C + F {C,E}
F −F −F {F}

Aside: the action of W on principal series reps is much simpler.
This is how to prove that principal series reps are reducible.
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Example: A2

Suppose s, t ∈ S(γ), (st)3 = 1. Write

Ĝ+−
γ = {π | s /∈ τ(π), t ∈ τ(π)} = {Ai}

G−+
γ = {s ∈ τ(π), t /∈ τ(π)} = {Bj}

s ·Ai = Ai +
∑

j

mji Bj +
∑

k

yki Zk , t ·Bj = Bj +
∑

j

nij Ai +
∑

k

xkj Zk .

Here the Zs have both s and t in τ . If we divide by the
span of the Zs, we find matrix representations

σ(s) =
(

I 0
M −I

)
, σ(t) =

(
−I N
0 I

)
σ(sts) =

(
−I + NM −N

M(−2 + NM) −MN + I

)
,

σ(tst) =
(

I − NM N(−2 + MN)
−M −I + MN

)
.
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Integer linear algebra in type A2

When W (γ) is type A2, we found formulas

σ(s) =
(

I 0
M −I

)
, σ(t) =

(
−I N
0 I

)
with M and N integer matrices with nonnegative entries.

Braid relation sts = tst ! MN = I, NM = I; so N = M−1.

Proposition. If M and N are nonnegative integer matrices
with NM = I, MN = I, they are permutation matrices.

Corollary. Suppose s, t type A2, s /∈ τ(A), t ∈ τ(A). Then
there is a unique B appearing in s · A with t /∈ τ(B).
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Cells in type A2

Theorem. Suppose W (γ) is of type A2, with
generators {s, t}. Cells in Ĝγ are of three types:

1. Singletons {X} with τ(X ) = ∅, σ(X ) = trivial.
2. Singletons {Z} with τ(Z ) = {s, t}, σ(Z ) = sign rep.
3. Pairs {A,B} with τ(A) = {t}, τ(B) = {s}, σ(cell) =

reflection rep,

σ(s) =
(

1 0
1 −1

)
, σ(t) =

(
−1 1
0 1

)
.

This description follows just from the integral
structure given by the natural Z-basis of irreducible
G-representations; the Borho-Jantzen-Duflo
dichotomy about the τ -invariant; and the braid
relation sts = tst .
Exercise for the bored. This is a real representation of the finite
group S3. Why aren’t σ(s) and σ(t) orthogonal?
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Cells in type BC2
Suppose s, t ∈ S(γ), (st)4 = 1. One can begin to analyze this
case as in type A2: one finds again

σ(s) =
(

I 0
M −I

)
, σ(t) =

(
−I N
0 I

)
but now with the braid relation stst = tsts.

Linear algebra over /Z as in A2 suggests ten possible cells that
are neither generic nor minimal. Two candidates are cells of
three representations: for example {A,A′,B}, with

σ(s) =

1 0 0
0 1 0
1 1 −1

 , σ(t) =

−1 0 1
0 −1 1
0 0 1

 .

The corresponding W representation is the sum (over Q) of the
reflection representation (spanned by A + A′ and B), and a
one-dimensional spanned by A− A′.
Another possibility is a cell {A,B}, with

σ(s) =
(

1 0
1 −1

)
, σ(t) =

(
−1 2
0 1

)
The point of this talk is to explain why such two-element cells
cannot arise in representation theory.
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Cells in type BC2

Proposition. Suppose {A,B} ⊂ Ĝγ , s /∈ τ(A), s ∈ τ(B).
Then the multiplicity of B in s · A is equal to

dim Ext1(A,B) = dim Ext1(B,A).

This ought to be elementary; but the only proof I know involves a
complete reducibliity result coming from perverse sheaves
(Beilinson/Bernstein/Deligne).

Identification Ext1(A,B) ' Ext1(B,A) is elementary: existence of
contravariant “duality” functor on G reps fixing irreducibles.

Corollary. The candidate cell {A,B} in type BC2 with

σ(s) =
(

1 0
1 −1

)
, σ(t) =

(
−1 2
0 1

)
cannot arise.
Proof. Applying the Proposition to (A,B, s) gives
dim Ext1(A,B) = 1. Applying it to (B,A, t) gives
dim Ext1(A,B) = 2.
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Cells in type BC2

Theorem. Suppose W (γ) is of type BC2, with generators
{s, t}. Cells in Ĝγ are of four types:

1. Singletons {X} with τ(X ) = ∅, σ(X ) = trivial.
2. Singletons {Z} with τ(Z ) = {s, t}, σ(Z ) = sign rep.
3. Triples {A,A′B} with τ(A) = τ(A′) = {t}, τ(B) = {s},

σ(s) =

1 0 0
0 1 0
1 1 −1

 , σ(t) =

−1 0 1
0 −1 1
0 0 1

 .

4. Triples {A,B,B′} with τ(A) = {t}, τ(B) = τ(B′) = {s},

σ(s) =

1 0 0
1 −1 0
1 0 −1

 , σ(t) =

−1 1 1
0 1 0
0 0 1

 .

I have explained why a cell containing the reflection rep of W (γ) must
also contain a one-dimensional rep

µ(s) = 1, µ(t) = −1 or τ(s) = −1, τ(t) = 1.

These arguments do not exclude (for example) candidate cells with a
single representation M, s ·M = M, t ·M = −M.

But it’s only a colloquium; I can omit something.
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So what do cells look like?
Lusztig’s description of representations of finite Chevalley
groups used a partition of Ŵ into families.

Each family F a has a unique special representation
σ0(F), and some additional representations σ′i (F).

Lusztig proved: families = the sets of W reps defined
(with Kazhdan) by left-right cells in W .

Every cell rep of W is σ0(F) +
∑

i miσ
′
i (F).

Using deep results about Hecke algebras, Lusztig
calculated his families completely in all cases.

Arguments above prove that the families for W (BC2) are

{trivial}, {sgn}, {reflection, µ, τ}.

Similar argument (using Ext2 in addition to Ext1)
calculates families in W (D4).

Hope: characterize cell reps of W using integrality,
positivity, symmetry properties like those above.
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