What's special about special?

David Vogan

University of Chicago Colloquium April 23, 2025 David Vogan

Outline

Introduction

Defining the $W(\gamma)$ representation $\sigma(\pi)$

The Borho-Jantzen-Duflo τ invariant

Describing cells

David Vogan

What this talk is about

An infinite-diml irreducible representation π of a reductive group *G* is very complicated.

 $\pi \rightsquigarrow \text{simpler invt}$ (Jantzen-Zuckerman):

- 1. rep σ of a Weyl group, vector $\mathbf{v}(\pi)$ in space of σ .
- 2. vector $v(\pi) \rightsquigarrow$ subquotient rep $\sigma(\pi)$ of σ .
- 3. $\sigma(\pi)$ has natural irreducible quotient $\sigma^{J}(\pi)$ (Joseph).

Parts (1) and (2) are defined over \mathbb{Z} .

I learned at Chicago (from Jon Alperin and George Glauberman) that definition over \mathbb{Z} is a good and interesting thing.

David Vogan

What this talk is about (continued)

Our story so far: infinite dimensional representation π of reductive $G \rightsquigarrow \sigma(\pi) \twoheadrightarrow \sigma^{J}(\pi)$ rep and irreducible quotient of finite Weyl group W.

GL(n): $\sigma(\pi) = \sigma^{J}(\pi)$ is irreducible; any $\sigma \in \widehat{W}$ can occur.

Other G: only certain values of $\sigma^{J}(\pi)$ are possible.

FACT (Lusztig): $\sigma^{J}(\pi)$ must be a special rep of W

Lusztig (1979) defined special reps of W as part of his classification of irr reps of finite Chevalley groups.

PLAN(1): outline the definition of $\sigma(\pi)$ (coherent families: Schmid, Jantzen, Zuckerman).

PLAN(2): sketch some elementary integrality properties of the rep $\sigma(\pi)$ (tau invariants: Borho, Jantzen, Duflo).

PLAN(3): show how these integrality properties lead to Lusztig's special reps in rank two.

David Vogan

Character formulas: compact case

K compact conn Lie, max torus *T*, $\pi \in \widehat{K}$.

 $\Theta_{\pi}(k) = \operatorname{tr} \pi(k)$ smooth on K; Θ_{π} determines π .

Weyl: there is a dominant regular character $\gamma \in \widehat{T}$ so that

$$\Theta_{\pi}(t) = \Big(\sum_{w \in W} \operatorname{sgn}(w)(w \cdot \gamma)(t)\Big)/D(t) \qquad (t \in T).$$

Summary: the character formula for an irreducible representation π of K is sum over a W-orbit of chars of T, coefficients given by representation sgn $\in \widehat{W}$.

We'll see that $\sigma(\pi) = \sigma^J(\pi) = \text{sgn.}$

David Vogan

Character formulas: noncompact case

Harish-Chandra showed how to extend Weyl's formula to real reductive $G \supset H$ maximal torus, $\pi \in \widehat{G}$.

 $\Theta_{\pi}(g) = \operatorname{tr} \pi(g)$ generalized fn on $G; \Theta_{\pi}$ determines π . HC: \exists dominant weight $\gamma \in \mathfrak{h}_{\mathbb{C}}^*$ so that

$$\Theta_{\pi}(h) = \Big(\sum_{w \in W} \sum_{\substack{\phi \in \hat{H} \\ d\phi = w \cdot \gamma}} a_{w,\phi} \cdot \phi(h) \Big) / D(h) \quad (h \in H; a_{w,\phi} \in \mathbb{Z}).$$

HC: differential eqns satisfied by $\Theta_{\pi} \rightsquigarrow \gamma$, exponentials.

Summary: character formula on *H* for irreducible representation π of *G* is sum over characters of *H* with differentials in a single *W*-orbit of characters of $\mathfrak{h}^*_{\mathbb{C}}$.

Roughly: $\sigma(\pi) \in \widehat{W}$ generated by function $w \mapsto a_w$ on W. Difficulty: $a_{w,\phi}$ depends not just on w but also on $\phi \in \widehat{H}$. David Vogan

(Not) making W act on characters of H.

Our story so far: $\pi \in \widehat{G} \rightsquigarrow \Theta_{\pi}$ distribution character of π :

$$\Theta_{\pi}(h) = \Big(\sum_{w \in W} \sum_{\substack{\phi \in \widehat{H} \\ d\phi = w \cdot \gamma}} a_{\phi} \cdot \phi(h) \Big) / D(h) \quad (h \in H; a_{\phi} \in \mathbb{Z}).$$

Want *W* to "act" on Θ_{π} : pretend Θ_{π} is "function" of γ ...:

$$\mathbf{x} \cdot \Theta_{\pi}(h) \stackrel{?}{=} \Big(\sum_{\mathbf{w} \in W} \sum_{\substack{\phi \in \widehat{H} \\ \mathbf{d}\phi' = \mathbf{w}\mathbf{x}^{-1} \cdot \gamma}} \mathbf{a}_{\phi} \cdot \phi'(h) \Big) / \mathcal{D}(h).$$

Dominant weight $\gamma \in \mathfrak{h}^*_{\mathbb{C}}$ called infinitesimal character of π

To make this precise, we need to pass from the character ϕ with $d\phi = w \cdot \gamma$ to a character ϕ' with $d\phi' = wx^{-1} \cdot \gamma$.

Should act on ϕ by $wx^{-1}w^{-1}$.

But W need not preserve the real Cartan subgroup H, so need not act on characters of H.

David Vogan

The integral Weyl group to the rescue.

To make Weyl group W act on a distribution character for G, needed W act on some characters of a real torus H.

Where *W* acts is on rational characters τ of *H*: if $\alpha \in \mathfrak{h}^*$ is a root, and $\alpha^{\vee} \in \mathfrak{h}$ the corresponding coroot, then

$$\mathbf{s}_{\alpha}(\tau) = \tau - \mathbf{d}\tau(\alpha^{\vee})\alpha$$

Rationality of τ means $d\tau(\alpha^{\vee}) \in \mathbb{Z}$; action of s_{α} just translates τ by a multiple of the root α .

This doesn't work in our setting: γ is not a rational character, so perhaps $\gamma(\alpha^{\vee}) \notin \mathbb{Z}$.

So we define the problem out of existence...

Definition. The integral Weyl group for $\gamma \in \mathfrak{h}^*_{\mathbb{C}}$ is

 $W(\gamma) = \{x \in W \mid x\gamma - \gamma = \text{integer combination of roots}\}$

David Vogan

Jantzen-Zuckerman translation (A)

Recall that we had a formula for a distribution character

$$\Theta_{\pi}(h) = \Big(\sum_{w \in W} \sum_{d\phi = w \cdot \gamma} a_{w,\phi} \cdot \phi(h)\Big) / D(h)$$

and wished to define (for x in W)

$$\mathbf{x} \cdot \Theta_{\pi}(h) \stackrel{?}{=} \Big(\sum_{\mathbf{w} \in W} \sum_{\boldsymbol{d}\phi' = \mathbf{w}\mathbf{x}^{-1} \cdot \gamma} a_{\phi} \cdot \phi'(h) \Big) / D(h)$$

For each character ϕ of differential $w\gamma$ in the character formula, and $x \in W(\gamma)$, we can define $\phi' = \phi + w(x \cdot \gamma - \gamma)$; here $x \cdot \gamma - \gamma$ is a sum of roots, so $w(x \cdot \gamma - \gamma)$ is as well, and therefore a well-defined (rational) character of *H*.

Theorem (Jantzen-Zuckerman): For $x \in W(\gamma)$, $x \cdot \Theta_{\pi}$ is an integer combination of chars of reps π' of infl char γ :

$$x \cdot \Theta_{\pi} = \sum_{\pi' ext{ infl char } \gamma} m_{\pi',\pi}(x) \Theta_{\pi'}.$$

David Vogan

ntroduction

Defining $\sigma(\pi)$ The τ invariant Describing cells

Jantzen-Zuckerman translation (B)

 $\gamma \in \mathfrak{h}^*$ dom regular, $W(\gamma) =$ integral Weyl group.

 $\widehat{G}_{\gamma} = \text{irr reps, infinitesimal char } \gamma$ (finite set).

 $\mathbb{Z}\widehat{G}_{\gamma}$ = virtual reps, infl char γ (finite rank lattice).

Recall Jantzen-Zuckerman action on virtual characters

 $x \cdot \Theta_{\pi} = \sum_{\pi' ext{ infl char } \gamma} m_{\pi',\pi}(x) \Theta_{\pi'}.$

Theorem (Jantzen-Zuckerman): The integer matrices

 $M(x) = (m_{\pi',\pi}(x)) \qquad (x \in W(\gamma))$

define a representation of $W(\gamma)$ over \mathbb{Z} , with basis \widehat{G}_{γ} .

Understanding this integer rep of $W(\gamma)$ is a large step toward character formulas for irreducible reps.

David Vogan

Cones and cells

 $\pi, \pi' \in \widehat{G}_{\gamma}$; write $\pi' \leq \pi$ if $\exists x \in W(\gamma)$ with Θ'_{π} in $x \cdot \Theta_{\pi}$. Equivalent: $\exists F$ alg rep of G_{ad} , π' subguo of $\pi \otimes F$. $\pi' \leq_L \pi$ is directed graph structure on \widehat{G}_{γ} . Left cone of π is $\overline{C}(\pi) = \{\pi' | \pi' \leq_L \pi\}; W(\gamma) \circlearrowright \mathbb{Z}\overline{C}(\pi).$ Left sub of π is $\overline{C}_0(\pi) = \{\pi' | \pi' \leq \pi \neq \pi'\}$; $W(\gamma) \oslash \mathbb{Z}\overline{C}_0(\pi)$. Get equiv relation $\pi \sim_L \pi'$ iff $\pi' <_L \pi <_L \pi'$. Equiv classes are called left cells: $C(\pi) = \overline{C}(\pi) - \overline{C}_0(\pi)$. Left cell rep $\sigma(\pi)$ of $W(\gamma)$ is $\mathbb{Z}\overline{C}(\pi)/\mathbb{Z}\overline{C}_0(\pi)$.

Free \mathbb{Z} module with basis $C(\pi)$.

Reason for the term left: Kazhdan and Lusztig introduced two relations \leq_L , \leq_R , on W, related to left and right multiplication in the Hecke algebra of W. This notion generalizes the KL definition of \leq_L .

David Vogan

The Borho-Jantzen-Duflo τ invariant

$$\begin{split} & W(\gamma) = \text{integral Weyl group} \supset S(\gamma) \text{ simple reflections.} \\ & \mathsf{Def: } \tau\text{-invt of } \pi \in \widehat{G}_{\gamma} \text{ is } \tau(\pi) = \{ s \in S(\gamma) \mid s \cdot \pi = -\pi \}. \\ & \mathsf{Write } \ \widehat{G}_{\gamma}^s = \{ \pi \in \widehat{G}_{\gamma} \mid s \in \tau(\pi) \}, \quad \widehat{G}_{\gamma}^{S_0} = \bigcap_{s \in S_0} \widehat{G}_{\gamma}^s. \end{split}$$

We know everything about the action of simple reflections in the τ -invariant.

Next theorem tells something about the action of simple reflections not in the τ -invariant.

Theorem (BJDZ?) Suppose $\pi \in \widehat{G}_{\gamma}$, and $s \in S(\gamma)$. Then

$$\boldsymbol{s} \cdot \boldsymbol{\pi} = \begin{cases} -\pi & (\boldsymbol{s} \in \tau(\boldsymbol{\pi})) \\ \boldsymbol{\pi} + \sum_{\boldsymbol{\pi}' \in \widehat{G}_{\gamma}^{s}} \boldsymbol{m}_{\boldsymbol{\pi}', \boldsymbol{\pi}}(\boldsymbol{s}) \boldsymbol{\pi}' & (\boldsymbol{s} \notin \tau(\boldsymbol{\pi})). \end{cases}$$

Order \widehat{G}_{γ} by putting \widehat{G}_{γ}^{s} *last*: $\sigma(\boldsymbol{s}) = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{M} & -\boldsymbol{I} \end{pmatrix}.$

David Vogan

Where does that theorem come from?

At the center of geometric representation theory for $G(\mathbb{C})$ is the smooth projective algebraic variety

 $\mathcal{B} =$ Borel subgroups of $G(\mathbb{C})$.

We have dim $H^*(\mathcal{B}, \mathbb{C}) = \#W$: \mathcal{B} is a geometrization of W.

W is generated by finite set *S* of simple reflections.

 $s \in S \rightsquigarrow$ variety \mathcal{P}_s of parabolic subgroups of type s.

Smooth fibration $p_s \colon \mathcal{B} \to \mathcal{P}_s$ makes $\mathcal{B} \neq \mathbb{P}^1$ bundle.

These \mathbb{P}^1 bundles control the geometry of \mathcal{B} .

Geometric representation theory \rightsquigarrow rep theory of *G* "fibers" over the rep theory of *SL*(2) for each simple *s*.

Borho-Jantzen-Duflo-Zuckerman theorem does that.

David Vogan

```
Introduction
Defining \sigma(\pi)
The \tau invariant
Describing cells
```

τ invariants and cells

$$m{s}\cdot \pi = egin{cases} -\pi & (m{s}\in au(\pi)) \ \pi+\sum_{\pi'\in\widehat{G}^{\mathbf{s}}_{\gamma}}m{m}_{\pi',\pi}(m{s})\pi' & (m{s}
otin au(\pi)) \end{cases}.$$

Corollary Suppose $\pi \in \widehat{G}_{\gamma}$.

1. If $\tau(\pi) = S_{\gamma}$ (all simple reflections) then $C(\pi) = \overline{C}(\pi) = \{\pi\},$

and $\sigma(\pi) = \operatorname{sgn}_{W(\gamma)}$. (Say π is minimal.)

2. If $\tau(\pi) = \emptyset$, then

 $\overline{C}(\pi) = \{\pi\} \cup \{\pi' | \tau(\pi') \neq \emptyset\}, \qquad C(\pi) = \{\pi\}$

and $\sigma(\pi) = \text{trivial}_{W(\gamma)}$. (Say π is generic.)

Interesting/difficult case: $\emptyset \subsetneq \tau(\pi) \subsetneq S(\gamma)$.

Minimal includes the representations usually called minimal, like the Segal-Shale-Weil metaplectic representation.

Generic is (nearly) the automorphic form notion of generic.

David Vogan

Example: U(2, 1)

Say G = U(2, 1), γ = half sum of positive roots. $W(\gamma) = W = S_3$, $S(\gamma) = \{s, t\} = \{(1, 2), (2, 3)\}$. \widehat{G}_{γ} consists of 6 representations:

1. *A* = generic disc ser, $\tau(A) = \emptyset$, *F* = triv, $\tau(F) = \{s, t\}$. 2. *B* = hol ds, $\tau(B) = \{s\}$, *C* = antihol ds, $\tau(C) = \{t\}$. 3. *D* = hol *A*_a, $\tau(D) = \{t\}$, *E* = antihol *A*_a, $\tau(E) = \{s\}$.

Action of W

π	$m{s}\cdot \pi$	$t\cdot\pi$	left cell $C(\pi)$
Α	A + E	A + D	{ A }
В	-B	B + D	$\{\hat{B},\hat{D}\}$
С	C + E	-C	{ <i>C</i> , <i>E</i> }
D	D + B + F	-D	{ <i>B</i> , <i>D</i> }
Ε	-E	E + C + F	{ <i>C</i> , <i>E</i> }
F	-F	-F	{ <i>F</i> }

Aside: the action of W on principal series reps is much simpler. This is how to prove that principal series reps are reducible.

David Vogan

Introduction Defining $\sigma(\pi)$ The τ invariant

Describing cells

Example: A₂

Suppose
$$s, t \in S(\gamma)$$
, $(st)^3 = 1$. Write

$$\widehat{G}_{\gamma}^{+-} = \{\pi \mid s \notin \tau(\pi), t \in \tau(\pi)\} = \{A_i\}$$

$$G_{\gamma}^{-+} = \{s \in \tau(\pi), t \notin \tau(\pi)\} = \{B_j\}$$

$$s \cdot A_i = A_i + \sum_j m_{ji}B_j + \sum_k y_{ki}Z_k, \quad t \cdot B_j = B_j + \sum_j n_{ij}A_i + \sum_k x_{kj}Z_k.$$

Here the Zs have both s and t in τ . If we divide by the span of the Zs, we find matrix representations

$$\sigma(s) = \begin{pmatrix} I & 0 \\ M & -I \end{pmatrix}, \quad \sigma(t) = \begin{pmatrix} -I & N \\ 0 & I \end{pmatrix}$$
$$\sigma(sts) = \begin{pmatrix} -I + NM & -N \\ M(-2 + NM) & -MN + I \end{pmatrix},$$
$$\sigma(tst) = \begin{pmatrix} I - NM & N(-2 + MN) \\ -M & -I + MN \end{pmatrix}.$$

David Vogan

Integer linear algebra in type A_2

When $W(\gamma)$ is type A_2 , we found formulas

$$\sigma(\boldsymbol{s}) = \begin{pmatrix} I & 0 \\ M & -I \end{pmatrix}, \qquad \sigma(t) = \begin{pmatrix} -I & N \\ 0 & I \end{pmatrix}$$

with M and N integer matrices with nonnegative entries.

Braid relation $sts = tst \leftrightarrow MN = I$, NM = I; so $N = M^{-1}$.

Proposition. If *M* and *N* are nonnegative integer matrices with NM = I, MN = I, they are permutation matrices.

Corollary. Suppose *s*, *t* type A_2 , $s \notin \tau(A)$, $t \in \tau(A)$. Then there is a unique *B* appearing in $s \cdot A$ with $t \notin \tau(B)$.

David Vogan

Cells in type A₂

Theorem. Suppose $W(\gamma)$ is of type A_2 , with generators $\{s, t\}$. Cells in \widehat{G}_{γ} are of three types:

- 1. Singletons $\{X\}$ with $\tau(X) = \emptyset$, $\sigma(X) =$ trivial.
- 2. Singletons $\{Z\}$ with $\tau(Z) = \{s, t\}, \sigma(Z) = \text{sign rep.}$
- 3. Pairs $\{A, B\}$ with $\tau(A) = \{t\}, \tau(B) = \{s\}, \sigma(\text{cell}) = \text{reflection rep},$

$$\sigma(s) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, \quad \sigma(t) = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}.$$

This description follows just from the integral structure given by the natural \mathbb{Z} -basis of irreducible *G*-representations; the Borho-Jantzen-Duflo dichotomy about the τ -invariant; and the braid relation sts = tst.

Exercise for the bored. This is a real representation of the finite group S_3 . Why aren't $\sigma(s)$ and $\sigma(t)$ orthogonal?

David Vogan

Cells in type BC₂

Suppose $s, t \in S(\gamma)$, $(st)^4 = 1$. One can begin to analyze this case as in type A_2 : one finds again

$$\sigma(s) = \begin{pmatrix} I & 0 \\ M & -I \end{pmatrix}, \qquad \sigma(t) = \begin{pmatrix} -I & N \\ 0 & I \end{pmatrix}$$

but now with the braid relation *stst* = *tsts*.

Linear algebra over $/\mathbb{Z}$ as in A_2 suggests ten possible cells that are neither generic nor minimal. Two candidates are cells of three representations: for example $\{A, A', B\}$, with

$$\sigma(s) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}, \quad \sigma(t) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

The corresponding *W* representation is the sum (over \mathbb{Q}) of the reflection representation (spanned by A + A' and *B*), and a one-dimensional spanned by A - A'.

Another possibility is a cell $\{A, B\}$, with

$$\sigma(\mathbf{s}) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, \qquad \sigma(t) = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$$

The point of this talk is to explain why such two-element cells cannot arise in representation theory.

David Vogan

Cells in type BC₂

Proposition. Suppose $\{A, B\} \subset \widehat{G}_{\gamma}, s \notin \tau(A), s \in \tau(B)$. Then the multiplicity of *B* in $s \cdot A$ is equal to

 $\dim \operatorname{Ext}^1(A,B) = \dim \operatorname{Ext}^1(B,A).$

This ought to be elementary; but the only proof I know involves a complete reducibliity result coming from perverse sheaves (Beilinson/Bernstein/Deligne).

Identification $\operatorname{Ext}^1(A, B) \simeq \operatorname{Ext}^1(B, A)$ is elementary: existence of contravariant "duality" functor on *G* reps fixing irreducibles.

Corollary. The candidate cell $\{A, B\}$ in type BC_2 with

$$\sigma(s) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, \qquad \sigma(t) = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$$

cannot arise.

Proof. Applying the Proposition to (A, B, s) gives dim $Ext^{1}(A, B) = 1$. Applying it to (B, A, t) gives dim $Ext^{1}(A, B) = 2$.

David Vogan

Cells in type BC₂

Theorem. Suppose $W(\gamma)$ is of type BC_2 , with generators $\{s, t\}$. Cells in \widehat{G}_{γ} are of four types:

- 1. Singletons $\{X\}$ with $\tau(X) = \emptyset$, $\sigma(X) = \text{trivial}$.
- 2. Singletons $\{Z\}$ with $\tau(Z) = \{s, t\}, \sigma(Z) = \text{sign rep.}$
- 3. Triples $\{A, A'B\}$ with $\tau(A) = \tau(A') = \{t\}, \tau(B) = \{s\}, t \in \{s\}$

$$\sigma(s) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}, \quad \sigma(t) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

4. Triples $\{A, B, B'\}$ with $\tau(A) = \{t\}, \tau(B) = \tau(B') = \{s\}, t$

$$\sigma(s) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}, \quad \sigma(t) = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

I have explained why a cell containing the reflection rep of $W(\gamma)$ must also contain a one-dimensional rep

$$\mu(s) = 1, \ \mu(t) = -1 \quad \text{or} \quad \tau(s) = -1, \ \tau(t) = 1.$$

These arguments do not exclude (for example) candidate cells with a single representation M, $s \cdot M = M$, $t \cdot M = -M$.

But it's only a colloquium; I can omit something.

David Vogan

So what do cells look like?

Lusztig's description of representations of finite Chevalley groups used a partition of \widehat{W} into families.

Each family \mathcal{F} a has a unique special representation $\sigma_0(\mathcal{F})$, and some additional representations $\sigma'_i(\mathcal{F})$.

Lusztig proved: families = the sets of W reps defined (with Kazhdan) by left-right cells in W.

Every cell rep of W is $\sigma_0(\mathcal{F}) + \sum_i m_i \sigma'_i(\mathcal{F})$.

Using deep results about Hecke algebras, Lusztig calculated his families completely in all cases.

Arguments above prove that the families for $W(BC_2)$ are

{trivial}, {sgn}, {reflection, μ, τ }.

Similar argument (using Ext^2 in addition to Ext^1) calculates families in $W(D_4)$.

Hope: characterize cell reps of W using integrality, positivity, symmetry properties like those above.

David Vogan