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What this talk is about

David Vogan

Introduction

An infinite-diml irreducible representation 7 of a
reductive group G is very complicated.
m ~~ simpler invt (Jantzen-Zuckerman):

1. rep o of a Weyl group, vector v(r) in space of o.

2. vector v(m) ~ subquotient rep o(x) of o.
3. o(m) has natural irreducible quotient o¥(r) (Joseph).

Parts (1) and (2) are defined over Z.

| learned at Chicago (from Jon Alperin and George Glauberman)
that definition over Z is a good and interesting thing.



What this talk is about (continued)

David Vogan
Our story so far: infinite dimensional representation Introduction

7 of reductive G ~ o () — ¢”(n)
rep and irreducible quotient of finite Weyl group W.

GL(n): o(r) = o?(r) is irreducible; any o € W can occur.
Other G: only certain values of ¢/() are possible.
FACT (Lusztig): o”(7) must be a special rep of W

Lusztig (1979) defined special reps of W as part of his
classification of irr reps of finite Chevalley groups.

PLAN(1): outline the definition of o ()
(coherent families: Schmid, Jantzen, Zuckerman).

PLAN(2): sketch some elementary integrality properties of
the rep o(r) (tau invariants: Borho, Jantzen, Duflo).

PLAN(3): show how these integrality properties lead to
Lusztig’s special reps in rank two.



Character formulas: compact case

David Vogan

Defining o ()

K compact conn Lie, max torus T, = € K.

O, (k) = trm(k) smooth on K; ©,. determines .

Weyl: there is a dominant regular character v € T so that
O.(t) = (Z sgn(w)(w - 'y)(t))/D(z‘) (teT).
weWw

Summary: the character formula for an irreducible
representation 7 of K is sum over a W-orbit of chars of T,

coefficients given by representation sgn € W.
We'll see that o(7) = o () = sgn.



Character formulas: noncompact case

David Vogan

Harish-Chandra showed how to extend Wgyl’s formula to S
real reductive G O H maximal torus, = € G.
©,(9) = trm(g) generalized fn on G; ©, determines .
HC: 3 dominant weight v € b so that
Ox(n) = (D D aws-o(n)/D(h) (he H:aw, € 7).

WEW  gchi
dp=w-y

HC: differential egns satisfied by ©, ~- v, exponentials.

Summary: character formula on H for irreducible
representation = of G is sum over characters of H with
differentials in a single W-orbit of characters of h.

Roughly: o(7) € w generated by function w — a,, on W.

Difficulty: aw,, depends not just on w but also on ¢ & H.



(Not) making W act on characters of H.

Our story so far: 7 € G~ O, distribution character of =

eﬂ(h)z(z 3 a¢~¢(h))/D(h) (he H;ay € 7).

weW 4cH
dp=w-~

Want W to “act” on ©,: pretend ©, is “function” of ~...:

coun (Y Y adm)/om)

weWw  pechH

dop’=wx 1.

Dominant weight v € h¢ called infinitesimal character of =

To make this precise, we need to pass from the character
¢ with d¢ = w -~ to a character ¢’ with d¢/ = wx—" - 4.

Should act on ¢ by wx—Tw=1.

But W need not preserve the real Cartan subgroup H, so
need not act on characters of H.

David Vogan

Defining o ()



The integral Weyl group to the rescue.

David Vogan

To make Weyl group W act on a distribution character for

oot
G, needed W act on some characters of a real torus H. cfining o ()

Where W acts is on rational characters 7 of H: if « € h* is
aroot, and oV € b the corresponding coroot, then

So(7) =7 — dr(a¥)a.
Rationality of - means d7(«") € Z; action of s, just
translates 7 by a multiple of the root a.

This doesn’t work in our setting: ~ is not a rational
character, so perhaps v(a") ¢ Z.

So we define the problem out of existence. ..
Definition. The integral Weyl group for v € b is

W(~) = {x € W | xy — v = integer combination of roots}



Jantzen-Zuckerman translation (A)

David Vogan
Recall that we had a formula for a distribution character Defining o ()
Ox(n = (> > aws-o(h)/D(h)
weW dop=w-~

and wished to define (for x in W)

xo0u ML (Y S a-d(h)/Dh).

weW do/ =wx—1.5

For each character ¢ of differential w~ in the character formula,
and x € W(v), we can define ¢’ = ¢ + w(x - v —7); here

X -~y — v is a sum of roots, so w(x -y — ~) is as well, and
therefore a well-defined (rational) character of H.

Theorem (Jantzen-Zuckerman): For x € W(v), x - © is an
integer combination of chars of reps =’ of infl char ~:

X-Op= Z mﬁl,ﬂ(X)@ﬂ/.

7/ infl char ~



Jantzen-Zuckerman translation (B)

David Vogan

~ € h* dom regular, W(~) = integral Weyl group.

~

Defining o ()
G, = irr reps, infinitesimal char ~ (finite set).

Zéﬁ, = virtual reps, infl char ~ (finite rank lattice).

Recall Jantzen-Zuckerman action on virtual characters

X - eﬂ- = Z mﬂ/yﬂ-(X)eﬂ-/.

«’ infl char v
Theorem (Jantzen-Zuckerman): The integer matrices
M(x) = (m ~(x))  (x € W(7))
define a representation of W(~) over Z, with basis G,.

Understanding this integer rep of W(~) is a large step
toward character formulas for irreducible reps.



Cones and cells

David Vogan

/ e . 1 / H 1 !
m,m € Gy, write 7’ <; wif 3x € W(v) with © in x - . Defiing o)

Equivalent: 3F alg rep of Gag, ' subquo of 7 @ F.

7w’ <, 7 is directed graph structure on (3‘7.

Left cone of 7 is C(n) = {«'|n’" <, n}; W(y) O ZC(x).

Left sub of 7 is Co() = {n'|7’ <, 7 &L ©'}; W(v) O ZCo().

Get equiv relation 7 ~, 7" iff ' <, m# <, «’. Equiv classes
are called left cells: C(r) = C(n) — Co(r).

Left cell rep o(n) of W(v) is ZC(r)/ZCo(7).
Free Z module with basis C().

Reason for the term left: Kazhdan and Lusztig introduced two relations
<1, <pg, on W, related to left and right multiplication in the Hecke
algebra of W. This notion generalizes the KL definition of <;.



The Borho-Jantzen-Duflo 7 invariant i Vogan

W(v) = integral Weyl group D S(~) simple reflections.
Def: r-invtof 7 € G, is 7(7) = {s € S(7) | s - 7 = —7}. T
Write GS = {r € G, [se7(n)}, G® =Nees,GE.

We know everything about the action of simple reflections
in the r-invariant.

Next theorem tells something about the action of simple
reflections not in the r-invariant.

Theorem (BJDZ?) Suppose 7 € @7, and s € S(y). Then
s - (s € 7(m))
CT = ,
T+ Eﬂ’eég My ()7 (s ¢ 7(w)).

Order @7 by putting é§ last: o(s) = (/\IA S/ .



Where does that theorem come from?

David Vogan

At the center of geometric representation theory for G(C)
is the smooth projective algebraic variety

B = Borel subgroups of G(C).
We have dim H*(B,C) = #W: B is a geometrization of W.

The 7 invariant

W is generated by finite set S of simple reflections.
s € S ~ variety P of parabolic subgroups of type s.
Smooth fibration ps: B — Ps makes 3 a P! bundle.
These P! bundles control the geometry of 3.

Geometric representation theory ~~ rep theory of G
“fibers” over the rep theory of SL(2) for each simple s.

Borho-Jantzen-Duflo-Zuckerman theorem does that.



7 invariants and cells RS
s-w:{_w (s € 7(m))

T weas Mo (S)7 (s 7(m))

The 7 invariant
Corollary Suppose 7 € a;.
1. If 7(w) = S, (all simple reflections) then
C(m) = C(m) = {~},
and o(m) = sgny,)- (Say 7 is minimal.)
2. Ifr(m) =0, then
C(m) ={myu{x'|r(x") #0},  C(m) = {m}
and o () = trivialy(.). (Say = is generic.)
Interesting/difficult case: 0 & 7(7) & S(v).

Minimal includes the representations usually called minimal, like
the Segal-Shale-Weil metaplectic representation.

Generic is (nearly) the automorphic form notion of generic.



Example: U(2,1)

Say G = U(2,1), v = half sum of positive roots.
W) =W =358, S0 ={st}=1{(1,2),(23)}
G‘W consists of 6 representations:

1. A= generic disc ser, 7(A) = 0, F = triv, 7(F) = {s, t}.
2. B=holds, 7(B) = {s}, C = antihol ds, 7(C) = {t}.
3. D =hol Aq, 7(D) = {t}, E = antihol A;, 7(E) = {s}.

David Vogan

The 7 invariant

Action of W

T 8- t-m left cell C(n)
A A+E A+D {A}

B -B B+D {B, D}

C C+E -C {C,E}

D D+B+F -D {B, D}

E -E E+C+F {C,E}

F —F —F {F}

Aside: the action of W on principal series reps is much simpler.
This is how to prove that principal series reps are reducible.



Example: A,
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Suppose s, t € S(v), (st)® = 1. Write

aj‘ ={r|s¢r(n),ter(n)}=1{A} Describing cells
G, " ={ser(n)t¢(n)} ={B}

S-A,‘ = A,‘+ij,'B/’+Zyk,'Zk, t- B/' = B,-+Zn,-,-A,—+Zxijk.
J k j k

Here the Zs have both s and tin 7. If we divide by the
span of the Zs, we find matrix representations

(e 0) = (3 1)

Yy N
o(sts) = (M(—2+NM) ~MN+ /) :

I—NM N(—2+ MN
a(tst):( M (—I+MN )>



Integer linear algebra in type A Devid Vogan

When W(’Y) iS type A2= we fOUﬂd formuIaS Describing cells

-1 N
o =(y %) c0=(3 )
with M and N integer matrices with nonnegative entries.

Braid relation sts = tst «~ MN = I, NM = I;so N = M.

Proposition. If M and N are nonnegative integer matrices
with NM = I, MN = I, they are permutation matrices.

Corollary. Suppose s, t type Ay, s ¢ 7(A), t € 7(A). Then
there is a unique B appearing in s - Awith t ¢ 7(B).



Cells in type A,

David Vogan

Theorem. Suppose W(~) is of type Ao, with
generators {s, t}. Cells in G, are of three types:
1. Singletons {X} with 7(X) = 0, o(X) = trivial. N
2. Singletons {Z} with 7(Z) = {s, t}, o(Z) = sign rep. peserioing cels
3. Pairs {A, B} with 7(A) = {t}, 7(B) = {s}, o(cell) =
reflection rep,

a(s):(] _°1> a(t):<51 ])

This description follows just from the integral
structure given by the natural Z-basis of irreducible
G-representations; the Borho-Jantzen-Duflo
dichotomy about the r-invariant; and the braid
relation sts = tst.

Exercise for the bored. This is a real representation of the finite
group S;. Why aren’t o(s) and o(t) orthogonal?



Cells in type BC»

Suppose s, t € S(v), (st)* = 1. One can begin to analyze this
case as in type Ax: one finds again

o =(y %) c0=(3 )

but now with the braid relation stst = tsts.

Linear algebra over /Z as in A> suggests ten possible cells that
are neither generic nor minimal. Two candidates are cells of
three representations: for example {A, A’, B}, with

1.0 0 -1 0 A
o(s) = (o 1 0 ) , o(t) = ( 0 -1 1) .
11 —1 0 0 1

The corresponding W representation is the sum (over Q) of the
reflection representation (spanned by A+ A’ and B), and a
one-dimensional spanned by A — A'.

Another possibility is a cell {A, B}, with

=1 %) ao=(3 %)

The point of this talk is to explain why such two-element cells
cannot arise in representation theory.

David Vogan

Describing cells



Cells in type BC»

David Vogan
Proposition. Suppose {A, B} C év, s ¢ 7(A),s € 7(B).
Then the multiplicity of Biin s- Ais equal to
dim Ext' (A, B) = dim Ext'(B, A). Describing cells

This ought to be elementary; but the only proof | know involves a
complete reducibliity result coming from perverse sheaves
(Beilinson/Bernstein/Deligne).

Identification Ext'(A, B) ~ Ext'(B, A) is elementary: existence of
contravariant “duality” functor on G reps fixing irreducibles.

Corollary. The candidate cell {A, B} in type BC, with

=1 %) ew=(4 %)

cannot arise.

Proof. Applying the Proposition to (A, B, s) gives
dim Ext'(A, B) = 1. Applying it to (B, A, t) gives
dim Ext'(A, B) = 2.



Ce”S |n type BCZ David Vogan

Theorem. Suppose W(~) is of type BC,, with generators

{s,t}. Cellsin CAE7 are of four types:
1. Singletons {X} with 7(X) = 0, o(X) = trivial.
2. Singletons {Z} with 7(Z) = {s, t}, o(Z) = sign rep. Describing cells
3. Triples {A, A'B} with 7(A) = 7(A") = {t}, 7(B) = {s},

1 0 O -1 0 1
o(s) = (0 1 0>7 o(t) = (O -1 1).
11 -1 0 0 1

4. Triples {A, B, B'} with 7(A) = {t}, 7(B) = 7(B') = {s},

1 0 0 -1 1 1
o(s)=|1 -1 0], o)=(0 1 0}.
1 0 -1 0 0 1
| have explained why a cell containing the reflection rep of W(~) must
also contain a one-dimensional rep
w(s)=1, u(t)=—-1 or 7(s)=—-1, 7(t) =1.
These arguments do not exclude (for example) candidate cells with a

single representation M, s- M =M, t- M = —M.
But it's only a colloquium; | can omit something.



So what do cells look like?
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Lusztig’s description of representations of finite Chevalley
groups used a partition of W into families.
Each family 7 a has a unique special representation
oo(F), and some additional representations o/(F). Describing cells

Lusztig proved: families = the sets of W reps defined
(with Kazhdan) by left-right cells in W.

Every cell rep of W is oo(F) + 5, mic!(F).

Using deep results about Hecke algebras, Lusztig
calculated his families completely in all cases.

Arguments above prove that the families for W(BC,) are
{trivial}, {sgn}, {reflection,p,7}.

Similar argument (using Ext? in addition to Ext')
calculates families in W(Dx).

Hope: characterize cell reps of W using integrality,
positivity, symmetry properties like those above.
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